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“DR. PRODUCTION®” AND PREDICTIVE MAINTENANCE:  
LESSONS LEARNED FROM SEMICONDUCTOR MANUFACTURING 

M. Schellenberger, G. Roeder, S. Anger, F. Klingert  
 

Fraunhofer Institute for Integrated Systems and Device Technology IISB, Germany 
 
 

ABSTRACT 
 
The semiconductor industry is a strong pacesetter in many technological areas - last but not 
least in “Industry 4.0”-related topics such as advanced data collection, data analytics and the 
use of data-driven production optimization. In this paper, an exemplary overview about both 
existing and evolving approaches for data-driven production optimization is given, with focus 
on predictive maintenance and other predictive analytics solutions. This overview is 
combined with the discussion of cost estimation for such implementations. A specific focus  
is set on how to quickly implement latest research results in the domain of "Industry 4.0" into 
complex production environments by utilizing the novel development and implementation 
approach of “Dr. Production®”. 
 
INTRODUCTION 
 
The application of APC (Advanced Process Control) is state-of-the-art in all semiconductor 
production lines. Yet, the race towards broader and deeper utilization of data in a "smart 
factory" is going on, striving towards predictive analytics and implementation of machine 
learning, e.g., in the areas of predictive maintenance or prediction of process and machine 
behavior. 
 
Thus, there is an ongoing need to implement latest research results on data analytics and 
"Industry 4.0" into production lines - and this affects not only current 300 mm fabs, but also 
200 mm lines. Moreover, it affects not only the so-called frontend-of-line, but also the 
backend. APC-solutions are wide-spread and developing technically from the application of 
statistical process control, fault detection, fault classification and run-to-run control to the use 
of big data solutions for predictive analytics and machine learning. This progress from 
information-related to optimization-related data analysis is in-line with the four evolving areas 
of data analytics as defined by Gartner (see Fig. 1). 
 
In order to quickly transfer latest research results from these domains into complex production 
environments, we created the new development and implementation approach  
“Dr. Production®”. With this structured approach, lessons learnt from state-of-the-art R&D 
projects can be transferred and re-used in a quick manner. The current focus is on predictive 
analytics implementations and related economic aspects.  
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Fig. 1.  Four areas of data analytics, as defined by Gartner (adopted from gartner.com) 

 
DR. PRODUCTION® 
 
Since the 1990’s, a focused team at the Fraunhofer Institute for Integrated Systems and 
Device Technology IISB develops APC solutions aiming at data-driven production 
optimization, equipment and process optimization and yield enhancement. In order to make 
the lessons learnt from more than 20 R&D projects and the algorithms developed in more than 
25 prototype implementations available in a structured manner, we created Dr. Production®, 
which was developed from an intrapreneurship activity within Fraunhofer. 
 
Dr. Production® offers a holistic solution consisting of three consecutive, manageable 
modules (see Fig. 2):  

1. Individual consulting and conception: The aim of this module is to clearly identify expected 
benefits (technical, quantitative and qualitative) and to elaborate a tailored approach towards 
data-driven production optimization. This includes the clarification of necessary prerequisites 
for realization, e.g., regarding data availability and data quality. 

2. Analysis of production process and data collection: Within this core module, the respective 
production process is carefully analyzed and data is collected. For successful data analysis, 
the combination of data science with system overview and technological understanding  
is inevitable. 

3. Development of intelligent algorithms: Finally, a prototype implementation of an algorithm is 
developed, based on the correlations identified in the second step.  
Steps two and three benefit most from Dr. Production’s® pool of proven data analytics 
solutions and machine learning algorithms. A lean data framework , which was derived from 
a generic framework developed with industry partners [1] fosters the prototype 
implementation. 
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Fig. 2.  Dr. Production®: a structured approach to quickly implement latest R&D results in complex  
             production environments. 

 
The benefits of this new development and implementation approach within R&D projects, for 
partners and customers are manifold: 

- Expertise, concrete algorithms and lessons learned are collected and pooled in a structured 
manner – not only with regard to technological aspects, but also in areas like organization and 
collaboration. 

- The pooled knowhow can be re-used and transferred to related application fields in 
semiconductor manufacturing, but also to other industries, and taking into account the needs 
of SMEs. 

- This builds the bridge from latest research to application-oriented, tailored and fast research 
and development. 
 
PREDICTIVE MAINTENANCE AND BEYOND 
 
In semiconductor manufacturing, the implementation of advanced process control solutions 
has become essential for cost effective manufacturing at high product quality. Among the 
most prominent APC solutions are predictive maintenance and related solutions based on 
predictive analytics. 
 
In the following sections, selected examples of predictive analytics solutions will be discussed 
that either contributed to Dr. Production® or benefited from its development and 
implementation approach. Since the examples are not elaborated to the last technical detail, 
reference to more detailed related publications is given where applicable.  
 
1. Predictive Maintenance 

 
A significant part of the operational costs in a semiconductor manufacturing plant is related to 
the frequent need for maintenance of the manufacturing equipment, which causes 
unscheduled downtime, scrap production and logistic challenges. In addition to random 
equipment failures, some of these maintenance necessities emerge periodically due to wear 
and tear of certain parts. The length of such a periodic maintenance interval is not always 
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constant, due to the influence of actual processing conditions, as well as random factors, e.g. 
the quality of the spare parts used and of the maintenance actions. 
 
To prevent unscheduled downtime and scrap production, today’s most common maintenance 
strategy (Preventive Maintenance, PM) aims for the time-based replacement of spare parts at 
an early stage, so as to prevent sudden equipment failures. This strategy results in additional, 
early maintenance actions, and therefore causes unnecessary non-productive downtime and 
increased spare-part consumption. For better equipment and spare-part utilization, Predictive 
Maintenance (PdM) aims for predicting the exact point in time when the system will fail. 
Utilizing, e.g., multivariate statistical learning methods, these PdM predictions aim at 
achieving improved maintenance planning and at preventing unscheduled equipment 
downtime, waste of spare parts, and scrap production. 
 
As an example, in close collaboration with an IC manufacturer, we created PdM models for 
prediction of the filament breakdown in ion-implanter sources, taking electrical parameters as 
basis for calculation [2]. Fig. 3 shows the “time-to-breakdown” curves (real and predicted) for 
two maintenance cycles. As a modeling method, Bayesian Networks regression was selected, 
resulting in a good average prediction error and thereby permitting an optimized maintenance 
planning. 
 

 
Fig. 3.  Observed and predicted “time-to-breakdown” curve, representing the degradation of two ion  
             source filaments. 
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2. Virtual Metrology 
 

While predictive maintenance has the manufacturing equipment in focus, virtual metrology 
(VM) is targeted to the manufactured product: With VM, post-process quality parameters are 
predicted from process and wafer state information. Just as PdM, VM is often based on 
statistical learning methods, and a large variety of potentially applicable algorithms  
is available. A key challenge of the virtual metrology application is proving its capability 
to produce precise predictions even in complex semiconductor manufacturing processes. 
 
We assessed the applicability of virtual metrology for a complex dry etch process which is 
conducted on different chambers, for different products, and for two levels of etch depth. 
Stochastic gradient boosting tree models were applied for algorithm development, and the 
application of ensembles of trees, including update strategies, were investigated [3]. Even in 
this complex process scenario, precise VM predictions together with the provision of reliance 
indicators are achievable (see Fig. 4). As result, time-consuming physical depth 
measurements, that are done at a fraction of processed wafers only, can now be amended by 
valid VM predictions for every single wafer. 
 

 
Fig. 4.  Comparison of VM predictions versus the metrology reference data for the case that the model  
             is updated after every incoming case with metrology data and the prediction is performed on the  
             next predictor data set. 

3. Prediction of Mechanical Setup Conditions  
 

In the example of PdM for the filament of an ion implanter discussed before, the condition of 
the filament was obviously related to electrical parameters that could be measured at the 
filament. Yet, in many cases, the status of equipment parts cannot be monitored, because there 
is no direct or evident correlation to equipment parameters. This is especially the case for 
mechanical settings performed by an operator. 
 
In joint research with an industry partner, we demonstrated that scheduled mechanical 
interventions on wire-bonding equipment can severely affect bonding quality and equipment 
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health in semiconductor mass production. Typical faults in mechanical setup for example 
include weak clamping due to undefined torque of the associated screws.  
 
A systematic big data analysis of potential correlations between mechanical setup states and 
available equipment parameters revealed that by utilizing a total of 6 equipment parameters, 
the actual condition of the mechanical setup could be predicted with an average accuracy of 
92 % [4]. Fig. 5 illustrates a part of this correlation between the setup conditions “weak/strong 
clamping” and the equipment parameters “current” and “deformation”. 
 
While up to now mechanical setup conditions could only be controlled outside the operating 
time, the novel data-based algorithm enables inline control for every single bonding event. 
This enhanced control of the mechanical setup conditions, otherwise being strongly affected 
by the responsible equipment operators, improves bonding quality, equipment health and 
process stability.  
 

 
Fig. 5.  Deformation (left axis) and generator current (right axis) traces of the mechanical setup  
             states, weak clamping (CW, dashed lines) and strong (CS, solid lines) clamping. 

 
4. Predictive Probing 

 
The prediction methods discussed so far were targeted on the manufacturing equipment or the 
product properties after a certain production step. Beyond that, the application of 
sophisticated test procedures during final test guarantees high quality of the final product. 
E.g., in LED manufacturing, high effort is spent to probe every single LED chip: in dedicated 
probing equipment, ultra-thin needles are used to contact an LED and measure its brightness, 
color and electrical properties. With thousands of LED chips to be tested per wafer, this is  
a time-consuming and expensive step. 
 
In order to save both, testing time and cost, we developed the novel approach of “predictive 
probing” to measure just a certain fraction of LED chips on a wafer but still get optical and 
electrical parameters from all LEDs (see Fig. 6). Predictive probing relies on long-term and 
short-term historic data: a basic identification of to-be-probed chips is derived from historic 
probing data from different wafers and products, revealing typical areas of uncertainty on  
a wafer. This basic identification is amended by utilizing measurement data collected during 
the processing of the very wafer that is ready for probing. Among those upstream metrology 
data are particle measurements, ultrasonic measurements or photoluminescence 
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measurements. The results from the reduced set of probed LED chips are finally used to also 
calculate the optical and electrical characteristics of the non-measured ones. 
 
Finally, it was possible to omit the measurement of 93% LED chips on a wafer and still 
predict the brightness, color and electrical parameters of all LEDs – with an accuracy that 
fulfils the specification of the manufacturing partner. 
 

 
Fig. 6.  The concept of predictive probing: Identify those LED chips that have to be probed in order to  
             reconstruct the optical and electrical parameters also from those LED chips that were not probed. 

 
ECONOMIC ASPECTS OF PREDICTIVE MAINTENANCE SOLUTIONS 
 
So far, technological aspects of predictive analytics were discussed. However, for application 
of respective solutions in an industrial environment, it is inevitable to also consider economic 
aspects.  
 
Since process tools in semiconductor facilities represent a huge amount of capital expenditure, 
it is essential to maximize the use of these assets and to minimize maintenance cost. The 
implementation of PdM yields the following effects: 

- Reduction of maintenance costs due to focusing on inevitable maintenance actions and 
optimized timing of the work. 

- Increased equipment utilization due to less time reserved for maintenance. 
- Reduction of yield losses, scrap wafers and rework due to reduced equipment failures. 
- As a negative, new risks are added by the fact that maintenance predictions may be incorrect. 

Those risks include, e.g., uptime loss and decreased device yield. 
 
Together with leading European semiconductor manufacturers, we developed a PdM-related 
cost model to quantify these effects [5]. The model compares costs to benefits and calculates 
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investment assessment figures such as payback period, return on investment and net present 
value. Fig. 7 shows the economic benefits due to the implementation of PdM at various 
equipment types. It was found that the potential savings of maintenance costs is an important 
contributor to the overall benefits. Reduction of scrap wafers is very important for batch 
equipment (e.g., furnaces). For most equipment types, the benefits outweigh the costs, 
reaching the break-even within 24 months or less. 
 

 
 
Fig. 7.  The profit of implementing predictive maintenance is greatly depending on the target equipment  
              (here: analysis in semiconductor manufacturing). 

 
CONCLUSIONS 
 
We shared and discussed examples for the application of predictive analytics in 
semiconductor manufacturing. Beyond the technical achievements and benefits, a cross-cut 
analysis revealed the following lessons-learned:  

- Collaboration is key: Data analytics comprises a field of high complexity and makes 
collaboration with universities, institutes and even competitors a must. 

- Technology understanding is inevitable: In complex production environments, it is not 
sufficient to only take care of statistics and analytics – it must be linked to equipment and 
technology knowledge. 

- Standards are of high importance: This includes technical standards, such as communication 
standards, but also process-oriented standards such as CRISP-DM (Cross-industry standard 
process for data mining [6]). 

- Data quality is often underestimated: Reliable data analytics and intelligent algorithms rely on 
quality input data. 

- Implementation is to be planned carefully: It is a good approach to start with single process 
optimizations and to go for low-hanging fruits first. However, it is important to keep the 
overall “automation picture” in mind and to avoid island-solutions. 
 



9th International Conference on ”Power Electronics for Plasma Engineering” 

24.9 

We also showed that starting from “classic” predictive maintenance, the structured 
development and implementation approach “Dr. Production®” facilitates the evolvement 
towards the application of related predictive analytics in the areas of virtual metrology, the 
prediction of mechanical setup conditions and predictive probing. 
 
The general concepts discussed here can be transferred to other areas in semiconductor 
manufacturing, but also to other industries with complex production sites. 
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