Investigation of predictive modeling for process control in plasma activated wafer bonding for integrated sensors

Georg Roeder1, Martin Schellenberger1, Anton Bauer1, Günter Hayderer2, Jörg Siegert2, Ewald Wachmann2
1Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany; 2ams AG, Unterpremstätten, Austria

Multi Sensor Platform for Smart Building

- European multi-project wafer (MPW) service for flexible 3D-integration of components and sensors on CMOS electronic platform chips
- Key processes: Wafer-to-wafer (WtW) bonding and connection by Through-Silicon-Via (TSV) technology

Wafer bonding process flow and control concept

- Low-temperature plasma activation
- Single wafer cleaning
- Wafer-to-wafer alignment
- Prebonding
- Thermal annealing
- Postboding
- CSAM void measurement

Generic APC concept for the wafer bond process

- Pre-process
- Process
- Post-process
- Metrology

- Wafer-to-wafer bonding processes require tight process control to reduce voids
- Solution: Apply predictive, data based optimization in wafer bonding

Overview of data provided and data aggregation

- Wafer bonding process
 - Logistic and equipment/ process data for wafer cleaning, plasma activation, wafer alignment
 - Data are comprised of already condensed indicators (key values), time resolved trace data and separate indicators (activation)

- CSAM quality control
 - Location and size of bond defects on wafer together with wafer bonding information

Analysis of the wafer bonder and the CSAM data

- Correlation of the total void area to the wafer bonder parameters and the equipment states
- Visualization of the parameter excursion leading to higher number of voids per wafer

Prediction model for the class of voids per wafer

- Analysis of classification tree on data set
- Training and prediction during runtime, start with 20 training cases

Summary and outlook

- Analysis of wafer bonder data and CSAM data to analyze dependencies on wafer and partner wafer
- Identification of key parameters for void formation
- Identification of the wafer bonder parameters and equipment states; correlation to void formation
- Classification model to predict void class from wafer bonder data with an accuracy of 95%
- Outlook: Include information from processing steps prior to wafer bonding and increase data volume to further improve prediction of void formation

Contact: georg.roeder@iisb.fraunhofer.de