Application of Virtual Metrology Techniques to combine Process Information from DOEs and individual Experiments performed during Equipment Assessment

Georg Roeder¹, Juergen Niess², Martin Schellenberger¹, Alexander Gschwandtner², Lothar Pfitzner¹, Rudolf Berger³, Raimund Förg^{3,4}

¹ Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany

² HQ-Dielectrics GmbH, Dornstadt, Germany

³ Infineon Technologies AG, Wernerwerkstrasse 2, Regensburg, Germany

⁴ Technische Hochschule Deggendorf, Edlmaierstrasse 6 and 8, Deggendorf, Germany

Application of Virtual Metrology Techniques to combine Process Information from DOEs and individual Experiments performed during Equipment Assessment

Introduction

- Overview of the SEAL project
- Virtual Metrology for equipment assessment
- Assessment of low-temperature microwave plasma oxidation
 - Principle of the low-temperature microwave plasma oxidation
 - Overview of the plasma reactor
 - Summary of the investigations and results
- Approaches to combine process information and results
 - Overview of the DOEs and individual experiments
 - Combination of DOEs
 - Approaches in VM development
 - Combination of individual experiments applying VM techniques
- Summary

Introduction Overview of the SEAL project

SEAL: Semiconductor Equipment Assessment Leveraging Innovation

- Assessment of prototype equipment and novel enhancements to existing equipment, and their application to next generation semiconductor technologies and device architectures (<u>http://www.seal-project.eu/</u>)
- Funding, duration: EU FP7 Framework Programme, June 2010 May 2013
- Partners: 8 end users, 19 equipment suppliers, 6 research institutes

HQ-Dielectrics

Main process themes	• EUV masks, cleaning front end und back end, lithography (optics and multi e-beam), low temperature oxidation , bonding of thin wafers, plasma immersion ion implantation
	• Full wafer and multi column e-beam inspection, life time
Key metrology equipment	measurements, nano-topography, EDS/EDX, mass metrology, acoustic microscopy, overlay metrology
Cross sut DO	• Equipment and process characterisation incl. virtual metrology and predictive maintenance, equipment
Cross-cut R&D	simulation, equipment automation, generic equipment topics and assessment, training

Introduction Virtual Metrology for equipment assessment

Virtual Metrology (VM) objectives

- Prediction of post process quality parameters using process and wafer state information including upstream metrology data
- Support of metrology operations, FDC, RtR control, and predictive maintenance
- VM is currently a topic at fab level

Motivation for VM at the equipment level

- Gaining better understanding of unit processes is at the outset of VM development
- → Improved use of knowledge gained from equipment development and assessment
- Provide basic process models for the benefit of the equipment supplier and IC manufacturer

HQ-Dielectrics

Application of Virtual Metrology Techniques to combine Process Information from DOEs and individual Experiments performed during Equipment Assessment

Introduction

- Overview of the SEAL project
- Virtual Metrology for equipment assessment

Assessment of low-temperature microwave plasma oxidation

- Principle of the low-temperature microwave plasma oxidation
- Overview of the plasma reactor
- Summary of the investigations and results
- Approaches to combine process information and results
 - Overview of the DOEs and individual experiments
 - Combination of DOEs
 - Approaches in VM development
 - Combination of individual experiments applying VM techniques
- Summary

Assessment of low-temperature microwave plasma oxidation Principle of the low-temperature microwave plasma oxidation

Motivation

- Thermal oxidation is generally not scalable and needs a high thermal budget
- Low thermal budget required for novel logic device structures (FINFET)
- Low thermal budget required for 450 mm wafer size (e.g. dislocation & distortion)

Reaction principle

■ Low reaction temperature (T \leq 400 °C) by microwave (MW) plasma-enhanced oxidation

Plasma generation at a planar MW antenna vs. a floating Si-substrate

Field-enhanced diffusion of charged oxygen species through the silicon dioxide layer

Assessment of low-temperature microwave plasma oxidation Overview of the plasma reactor

Microwave plasma oxidation module installed at the Fraunhofer IISB

Microwave plasma chamber details

 Reactor properties: High oxide growth rate with excellent uniformity and very low plasma damage compared to radicals oxidation and RF-based oxidation
Selective oxidation on W vs. Si

HQ-Dielectrics

Assessment of low-temperature microwave plasma oxidation Summary of the investigations and results

Investigations

- Optimization of low-temperature MW oxidation
- Extensive characterization of MOS cap test devices
- Comparison of plasma oxide vs. thermal oxide on regular product at Infineon

Results

- Excellent SiO₂ thickness uniformity and quality
- Electrical parameters comparable to furnace oxides

IISB

Application of Virtual Metrology Techniques to combine Process Information from DOEs and individual Experiments performed during Equipment Assessment

Introduction

- Overview of the SEAL project
- Virtual Metrology for equipment assessment
- Assessment of low-temperature microwave plasma oxidation
 - Principle of the low-temperature microwave plasma oxidation
 - Overview of the plasma reactor
 - Summary of the investigations and results

Approaches to combine process information

- Overview of the DOEs and individual experiments
- Combination of DOEs
- Approaches in VM development
- Combination of individual experiments applying VM techniques
- Summary

Approaches to combine process information and results Overview of the DOEs and individual experiments

Overview of the DOEs

- Investigation and adjustment of thickness (d_{av}) and homogeneity σ_d for MOS cap oxides (4 nm, 7 nm, 12 nm, 20 nm) by DOEs
- Completion of 3 individual designs for different gas mixtures (P_{MW, av} = 2190 W)

Individual experiments

Exploit limits of the parameter space, detailed investigation of temperature dependence (experiments at P_{MW, av} = 1095 W, T: RT to 900°C, t: 10 s to 560 s)

Factor T (°C) t (s) p (mTorr) levels High 160 800 200 Center 80 600 260 20 320 Low 400 H₂/He/O₂ (10 %/ 50 % / 40 %), Design applied for H₂/O₂ (10 % / 90 %), O₂ (100 %)

Overview of the factor levels in the DOEs Box-Behnken design factor

Approaches to combine process information and results Main results of the DOEs and individual experiments

Results summary

- d_{av} > 4 nm to 50 nm achievable in process window; $\sigma_d < 1\%$ achievable
- Similar dependence of d_{av} for different gas mixtures; individual dependence of σ_d
- **Typically, additional MW power tuning required to further minimize** σ_d

Investigation of thickness for different gas mixtures

Combination of the individual DOEs: Joint assessment of differences in d_{av} for the gas mixtures

Approaches to combine process information and results Combination of individual DOEs

Approach and results

- Combination of the individual DOEs modeling the gas mixtures as blocks
- Analysis using a quadratic model with linear interactions

Estimation of relevant parameter effects

Investigation of parameter effects and regression modeling

Regression modeling with selected predictors

→ Assessment of joint effects and regression modeling using all parameters possible

HQ-Dielectrics

Approaches to combine process information and results Approaches for VM development (1)

VM model objectives

- Development of a statistical model from a sample of training data
- Application of the model to predict a process quality variable for a new data vector in the same process

VM model development regression

HO-Dielectrics

Find function g(X) to approximate the true function f(X) to describe the process output Y

Experiment	T (°C)	p (mTorr)	Mittelwert	t (s),	02 (%)	H2 (%)	He (%)	d_av (nm)
			P(W)	Plasmabrenn				
T.		.	.	dauer 🛛 🍸	-		T	-
DOE HeH2O2	400	260	2190	20	50	10	40	5.735
DOE HeH2O2	400	260	2190	160	50	10	40	14.06
DOE HeH2O2	400	200	2190	80	50	10	40	10
DOE H2O2	400	260	2190	20	90	10	0	4.946

Approaches to combine process information and results Approaches for VM development (2)

Approaches to obtain stable models

- Selection of a variable subsets (orthogonal variable vectors)
- Regularization by variable ranking or elimination
- Regularization by penalization of the model

Investigated models

- Stepwise regression
- Lasso regression
- Stochastic gradient boosting trees

Bias-Variance tradeoff vs. model complexity

Model complexity (df)

HQ-Dielectrics

Combination of individual experiments applying VM techniques Stepwise regression – overview

Stepwise regression properties

- Parameter selection method (parametric) adding and removing terms from a multilinear model based on their statistical significance in a regression
- Start with initial model and comparison of explanatory power of incrementally larger and smaller models

15

IISB

First overview on complete data set (transformation of $\tau = t^{1/2}$)

Combination of individual experiments applying VM techniques Stepwise regression – application for prediction

Stepwise regression application

- Selection of first important parameters possible from complete data set
- Parameter selection depends on selected sample subset
- Selection of parameters applying data subsets and 10 fold cross-validation

Stepwise regression results applying the full data set and 10fold cross-validation

Data	Relevant parameters	R ²	σ _{residuals} training data	σ _{residuals} test data
Full data set	T, τ, [H ₂], T*P, T*τ, T*[H ₂], p*[He], τ*[H ₂], [O ₂]*[H ₂], T ² , τ ²	0.958	1.54 nm	-
10fold cross- validation	T, τ , [H ₂], T*P , T* τ , T*[H ₂], p*[He], τ *[H ₂], [O ₂]*[H ₂], T ² , τ ² , p, T*[O ₂] , p ² , P* τ , P*[O ₂], [O ₂] ²	0.959 ± 0.004	1.54 nm ± 0.06 nm	2.05 nm ± 0.40 nm

- Application of regression model for prediction possible
- Parameters selection from different data subsets difficult
- More formal method preferred

Combination of individual experiments applying VM techniques Lasso regression – overview

Lasso regression properties

- Parameter shrinkage (parametric) method achieved by adding a penalty term to the regression coefficients
- Coefficient estimates are shrunk towards zero forcing some coefficient estimates to be exactly equal to zero if the tuning parameter λ is sufficiently large
- Lasso regression provides parameter selection

Lasso regression and parameter shrinkage

Combination of individual experiments applying VM techniques Lasso regression – application for prediction

Determination of penalty term and regression coefficients

- **L**asso regression fit with 10-fold cross validation for different λ
- **Determine optimum lambda at minimum average (MSE +** σ_{MSE}) of test sample

Parameter estimation by Lasso regression

Lasso fit reveals slightly less R² than stepwise regression; overall 18 model coefficients are determined (4 different from stepwise regression)

Combination of individual experiments applying VM techniques **Boosted regression trees – overview**

Principle of boosted trees (BT)

- Ensemble learning: improve performance of a single model by fitting and combining many simple models
- BT applies two algorithm types:
 - algorithms for classification and regression trees
 - boosting algorithm to build a collection of models

Advantages

- Applicability to classification and regression problems
- Accommodation of continuous and categorical predictors
- Tree methods are nonparametric and nonlinear
- Inherent variable ranking
- Improved predictive performance vs. C&RT

Limitations

Model is complex and cannot be visualized like a single tree

Principle of BT

IISB

© Fraunhofer IISB

HQ-Dielectrics

Combination of individual experiments applying VM techniques BT regression – application for prediction

BT regression application

- Regression is performed on matrix with initial parameters (not design matrix)
- BT parameters (number of trees and tree size) are determined from training samples vs. test samples applying 10-fold cross validation

Optimization of tree parameters and regression by stochastic gradient boosting

Stochastic BT regression provides accurate modeling

HQ-Dielectrics

© Fraunhofer IISB

Combination of individual experiments applying VM techniques Comparison of VM methods

Result summary

- All methods identify relevant parameters and provide good regression and prediction results on the training and test sample, respectively
- Variable selection in stepwise regression and lasso identify different parameters
- BT provides best regression results using original data as non parametric method

Model comparison applying the full data set and 10fold cross-validation

Data	Relevant parameters	R ²	σ _{residuals} training data	σ _{residuals} test data
Stepwise regression	T, τ , [H ₂], T* τ , T*[O ₂], T*[H ₂], p ² , p*[He], P* τ , P*[O ₂], τ *[H ₂], [O ₂]*[H ₂], T ² , τ ² , p, [O ₂] ² , T*P	0.959 ± 0.004	1.54 nm ± 0.06 nm	2.05 nm ± 0.40 nm
Lasso regression	T, τ, [H ₂], T*τ, T*[O ₂], T*[H ₂], p ² , p*[He], P*τ, P*[O ₂], τ*[H ₂], [O ₂]*[H ₂], T ² , T*p, P*[H ₂], τ*[O ₂], τ*[He], [He] ²	0.946 ± 0.002	1.75 nm ± 0.07 nm	1.68 nm ± 0.52 nm
BT regression	T, p, P, τ, [O ₂], [H ₂], [He]	0.995 ± 0.001	0.54 nm ± 0.07 nm	1.43 nm ± 0.57 nm

Summary

- Virtual Metrology provides techniques to make available joint information from experiments at the early stage of equipment assessment
- Virtual Metrology techniques can build on information obtained from designs of experiments and from individual experiments
- VM provides the path from regression on the complete data set towards predictive modeling
- Stepwise regression, lasso regression and stochastic gradient boosting discussed as parametric and non parametric techniques
- Improved use of knowledge gained from equipment development and assessment demonstrated
- Basis for process models for the benefit of the equipment supplier and IC manufacturer

HO-Dielectrics

Thank you for your attention!

www.lisb.fraunhofer.de

ntineon

Acknowledgment

The presented work was supported within the SEAL project, which was funded by the European Commission under contract number IST-257379. The partners are grateful for the support of the EC.

