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SEAL: Semiconductor Equipment Assessment Leveraging Innovation 

 Assessment of prototype equipment and novel enhancements to existing 
equipment, and their application to next generation semiconductor technologies 
and device architectures (http://www.seal-project.eu/) 

 Funding, duration: EU FP7 Framework Programme, June 2010 – May 2013 

 Partners: 8 end users, 19 equipment suppliers, 6 research institutes 

 

Introduction 
Overview of the SEAL project 

• EUV masks, cleaning front end und back end, lithography 
(optics and multi e-beam), low temperature oxidation, 
bonding of thin wafers, plasma immersion ion implantation 

Main process themes  

• Full wafer and multi column e-beam inspection, life time 
measurements, nano-topography, EDS/EDX, mass metrology, 
acoustic microscopy, overlay metrology 

Key metrology equipment 

• Equipment and process characterisation incl. virtual 
metrology and predictive maintenance, equipment 
simulation, equipment automation, generic equipment topics 
and assessment, training 

Cross-cut R&D 

http://www.seal-project.eu/
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Virtual Metrology (VM) objectives 
 Prediction of post process quality parameters using process and wafer state 

information including upstream metrology data 
 Support of metrology operations, FDC, RtR control, and predictive maintenance 
 VM is currently a topic at fab level 

 

 

 

 

 

 

Motivation for VM at the equipment level 
 Gaining better understanding of unit processes is at the outset of VM development 
 Improved use of knowledge gained from equipment development and assessment 
 Provide basic process models for the benefit of the equipment supplier and IC 

manufacturer 

Introduction 
Virtual Metrology for equipment assessment 

VM workflow in a fabrication environment 
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Motivation 
 Thermal oxidation is generally not scalable and needs a high thermal budget 
 Low thermal budget required for novel logic device structures (FINFET)  
 Low thermal budget required for 450 mm wafer size (e.g. dislocation & distortion) 

Reaction principle 
 Low reaction temperature (T ≤ 400 °C) by microwave (MW) plasma-enhanced 

oxidation 

Assessment of low-temperature microwave plasma oxidation 
Principle of the low-temperature microwave plasma oxidation 

Plasma generation at a planar MW antenna vs. a 
floating Si-substrate 

Field-enhanced diffusion of charged oxygen 
species through the silicon dioxide layer 

𝒅 = 𝒄𝒄 + 𝒅𝟎 
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Assessment of low-temperature microwave plasma oxidation 
Overview of the plasma reactor 

Microwave plasma oxidation module 
installed at the Fraunhofer IISB 

Microwave plasma chamber details 
 

 Reactor properties: High oxide growth rate with excellent uniformity and very 
low plasma damage compared to radicals oxidation and RF-based oxidation 

 Selective oxidation on W vs. Si 
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Investigations 
 Optimization of low-temperature MW oxidation 
 Extensive characterization of MOS cap test devices 
 Comparison of plasma oxide vs. thermal oxide on regular product at Infineon 

Results 
 Excellent SiO2 thickness uniformity and quality 
 Electrical parameters comparable to furnace oxides 

Assessment of low-temperature microwave plasma oxidation 
Summary of the investigations and results 

Excellent SiO2 layer thickness uniformity on  
300 mm wafer 

d = 6.57 nm ± 0.04 nm (0.58%) 

Oxidation Temperature ~ 500 °C lower than RTO 
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Overview of the DOEs  
 Investigation and adjustment of thickness (dav) and homogeneity σd for MOS cap 

oxides (4 nm, 7 nm, 12 nm, 20 nm) by DOEs  
 Completion of 3 individual designs for different gas mixtures (PMW, av = 2190 W) 

Individual experiments 
 Exploit limits of the parameter space, detailed investigation of temperature 

dependence (experiments at PMW, av = 1095 W, T: RT to 900°C, t: 10 s to 560 s) 

Approaches to combine process information and results 
Overview of the DOEs and individual experiments 

Overview of the factor levels in the DOEs Box-Behnken design factor  
level arrangement 

Factor  
levels 

t (s) T (°C) p (mTorr) 

High 160 800 200 

Center 80 600 260 

Low 20 400 320 

Design 
applied for 

H2/He/O2 (10 %/  50 % / 40 %),  
H2/O2 (10 % / 90 %), O2 (100 %)  
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Results summary 
 dav > 4 nm to 50 nm achievable in process window; σd < 1% achievable 
 Similar dependence of dav for different gas mixtures; individual dependence of σd 

 Typically, additional MW power tuning required to further minimize σd 
 
 
 
 
 
 
 
 
 
 
 

 Combination of the individual DOEs: Joint assessment of differences in dav for the 
gas mixtures 

Approaches to combine process information and results 
Main results of the DOEs and individual experiments 

Investigation of thickness for different gas mixtures 

H2/He/O2, p = 200 mTorr O2, p = 200 mTorr H2/O2, p = 200 mTorr 
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Approach and results 
 Combination of the individual DOEs modeling the gas mixtures as blocks 
 Analysis using a quadratic model with linear interactions 

 
 
 
 
 
 
 
 
 
 
 
 
 

 Assessment of joint effects and regression modeling using all parameters possible 

Approaches to combine process information and results 
Combination of individual DOEs 

Investigation of parameter effects and regression modeling 

Estimation of relevant parameter effects Regression modeling with selected predictors 

R2 = 0.937 
σresiduals = 2.19 nm 
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VM model objectives 
 Development of a statistical model from a sample of training data 
 Application of the model to predict a process quality variable for a new data vector 

in the same process 

VM model development regression 
 Find function 𝑔 𝑋  to approximate the true function 𝑓 𝑋  to describe the process 

output 𝑌 

Approaches to combine process information and results 
Approaches for VM development (1) 

Equipment data 

No. of 
processes 

Metrology data Error 
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Approaches to obtain stable models 
 Selection of a variable subsets 

(orthogonal variable vectors) 
 Regularization by variable ranking or 

elimination 
 Regularization by penalization of the 

model 

 

Investigated models 
 Stepwise regression 
 Lasso regression 
 Stochastic gradient boosting trees 

 

Approaches to combine process information and results  
Approaches for VM development (2) 

Bias-Variance tradeoff vs. 
model complexity 

Best model 
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Stepwise regression properties 

 Parameter selection method (parametric) adding and removing terms from a 
multilinear model based on their statistical significance in a regression  

 Start with initial model and comparison of explanatory power of incrementally 
larger and smaller models 

Combination of individual experiments applying VM techniques 
Stepwise regression – overview 

First overview on complete data set (transformation of τ = t1/2) 

p = 260 mTorr, PMW, av = 2190 W, 
H2/O2:10 % / 90 % 
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Stepwise regression application 

 Selection of first important parameters possible from complete data set 

 Parameter selection depends on selected sample subset 

 Selection of parameters applying data subsets and 10fold cross-validation 

Combination of individual experiments applying VM techniques 
Stepwise regression – application for prediction 

Stepwise regression results applying the full data set and 10fold cross-validation  

Data Relevant parameters R2 σresiduals 
training data 

σresiduals  
test data 

Full data 
set 

T, τ, [H2], T*P, T*τ, T*[H2], p*[He], 
τ*[H2], [O2]*[H2], T2, τ2 

0.958 1.54 nm - 

10fold 
cross-
validation 

T, τ, [H2], T*P , T*τ , T*[H2], p*[He], 
τ*[H2], [O2]*[H2], T2, τ2, p, T*[O2] , 
p2 , P*τ, P*[O2], [O2]2 

0.959 
± 0.004 

1.54 nm 
± 0.06 nm 

2.05 nm 
± 0.40 nm 

 Application of regression model for prediction possible 

 Parameters selection from different data subsets difficult 

 More formal method preferred 
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Lasso regression properties 

 Parameter shrinkage (parametric) method achieved by adding a penalty term to 
the regression coefficients 

 Coefficient estimates are shrunk towards zero forcing some coefficient estimates to 
be exactly equal to zero if the tuning parameter λ is sufficiently large 

 Lasso regression provides parameter selection 

Combination of individual experiments applying VM techniques 
Lasso regression – overview 

Lasso regression and parameter shrinkage 

Coefficient 
estimation 

Penalization 
w1 

w2 

ŵ 
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Determination of penalty term and regression coefficients 

 Lasso regression fit with 10-fold cross validation for different λ 

 Determine optimum lambda at minimum average (MSE + σMSE) of test sample 

Combination of individual experiments applying VM techniques 
Lasso regression – application for prediction 

Parameter estimation by Lasso regression 

 Lasso fit reveals slightly less R2 than stepwise regression; overall 18 model 
coefficients are determined (4 different from stepwise regression) 
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Principle of boosted trees (BT) 
 Ensemble learning: improve performance of a single  

model by fitting and combining many simple models 
 BT applies two algorithm types: 

 algorithms for classification and regression trees 
 boosting algorithm to build a collection of 

models 

Advantages 
 Applicability to classification and regression problems 
 Accommodation of continuous and categorical  

predictors 
 Tree methods are nonparametric and nonlinear 
 Inherent variable ranking 
 Improved predictive performance vs. C&RT 

Limitations 
 Model is complex and cannot be visualized like a 

single tree 

Combination of individual experiments applying VM techniques 
Boosted regression trees – overview 

Principle of BT 

Initialization:  
 Draw random sample 
 Build tree on actual data 

and predict values 

Iteration: 
 Draw random sample 
 Build tree on pseudo 

residuals introducing 
gradient, adjust 
prediction, minimize on 
pseudo error function 

 Update model adjusted by 
learning rate 

 Repeat step on new 
random sample 

Output of final model 

Node 1 

Node 2 Node 3 

Node 1 

Node 2 Node 3 
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BT regression application 

 Regression is performed on matrix with initial parameters (not design matrix) 

 BT parameters (number of trees and tree size) are determined from training 
samples vs. test samples applying 10-fold cross validation 

Combination of individual experiments applying VM techniques 
BT regression – application for prediction 

Optimization of tree parameters and regression by stochastic gradient boosting 

 Stochastic BT regression provides accurate modeling 



21 

© Fraunhofer IISB  

Result summary 

 All methods identify relevant parameters and provide good regression and 
prediction results on the training and test sample, respectively 

 Variable selection in stepwise regression and lasso identify different parameters 

 BT provides best regression results using original data as non parametric method 

Combination of individual experiments applying VM techniques 
Comparison of VM methods 

Model comparison applying the full data set and 10fold cross-validation  

Data Relevant parameters R2 σresiduals 
training data 

σresiduals  
test data 

Stepwise 
regression 

T, τ , [H2], T*τ , T*[O2],  T*[H2], p2, 
p*[He], P*τ, P*[O2], τ*[H2], 
[O2]*[H2], T2, τ2, p, [O2]2, T*P 

0.959 
± 0.004 

1.54 nm 
± 0.06 nm 

2.05 nm 
± 0.40 nm 

Lasso 
regression 

T, τ, [H2], T*τ, T*[O2], T*[H2], p2, 
p*[He], P*τ, P*[O2], τ*[H2], 
[O2]*[H2], T2, T*p, P*[H2], τ*[O2], 
τ*[He], [He]2 

0.946 
± 0.002 

1.75 nm 
± 0.07 nm 

1.68 nm 
± 0.52 nm 

BT 
regression T‚  p,  P,  τ, [O2], [H2], [He] 

0.995 
± 0.001 

0.54 nm 
± 0.07 nm 

1.43 nm 
± 0.57 nm 
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 Virtual Metrology provides techniques to make available joint information from 
experiments at the early stage of equipment assessment 

 Virtual Metrology techniques can build on information obtained from designs of 
experiments and from individual experiments 

 VM provides the path from regression on the complete data set towards predictive 
modeling 

 Stepwise regression, lasso regression and stochastic gradient boosting discussed as 
parametric and non parametric techniques 

 

 Improved use of knowledge gained from equipment development and assessment 
demonstrated 

 Basis for process models for the benefit of the equipment supplier and IC 
manufacturer 
 

 

Summary 
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