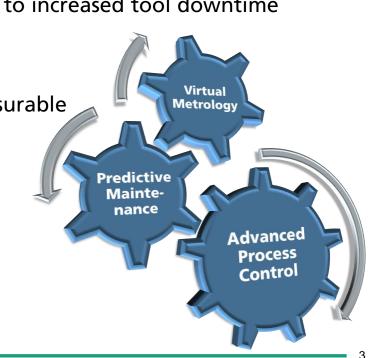
Application of Predictive Maintenance for semiconductor manufacturing equipment

Workshop der GMM–Fachgruppe 1.2.3 Abscheide- und Ätzverfahren, 13.12.2012 Ulrich Schöpka, Georg Roeder, Fraunhofer IISB, Erlangen, Germany

Agenda

- Concept of PdM: Overview and benefits
- Definition of Predictive Maintenance
 - Other industrial branches
 - Semiconductor manufacturing
- PdM implementation approaches
- Prerequisites for PdM
- Example

Concept of PdM for IC-manufacturing and equipment control Overview

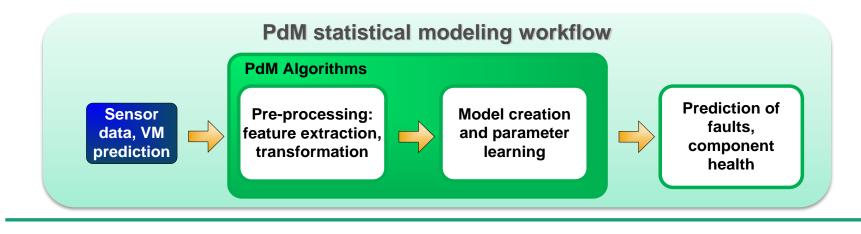

State-of-the-art

Reactive Maintenance (run to fail): error-based maintenance decisions

- Causes scrap production and unscheduled downtime
- Preventive Maintenance: time-based maintenance decisions
 - Early maintenance for security reasons leads to increased tool downtime

Deficiencies for maintenance planning

Wear part end-of-life unknown, usually not measurable


Concept of PdM for IC-manufacturing and equipment control PdM objectives and benefits

PdM objectives

Predict tool failures and wear part end-of-life from manufacturing tool data, from metrology data, and VM results

PdM benefits

- Prevention of unscheduled downtime/scrap production
- Better maintenance planning
- In-time allocation of maintenance personnel and spare parts
- Production risk assessment

Definition of Predictive Maintenance Other industrial branches

Different understanding of the term "Predictive Maintenance"

- Frequent manual measurements for detection of worn parts, e.g.
 - Ultrasonic micro crack detection in pipe systems
- Predictive sensors or integrated wear measurement, e.g.
 - Acoustic wave analysis of moving parts (e.g. bearings) for detection of imbalances and defective parts
 - Thermographic sensors for detection of abnormal heat in electronic components
- → Measurement-driven approaches

Definition of Predictive Maintenance Semiconductor manufacturing

Semiconductor industries

- "Low hanging fruits" usually already integrated into tools due to tight process specifications
- Implementation of wear measurement systems often not possible
- But: lots of data collected during processing
- → Data-driven approaches
- → Statistical techniques

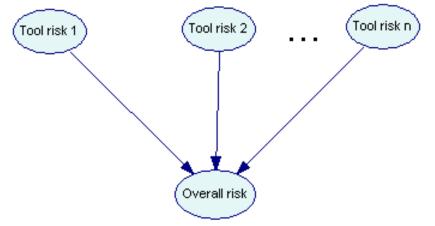
Definition of Predictive Maintenance Different PdM goals and objectives

Monitoring of overall tool performance for risk assessment

- Degraded tool might cause shifts in process performance
- "Tool health factor" for adaptive planning of control/measurement steps
- Root cause analysis for improved execution of maintenance
- → "Global" PdM approach

Monitoring of specific wear parts

- For better planning of frequent maintenance tasks
- For better planning of spare part demand
- Better logistic planning to prevent production downtimes (bottleneck tools)


➔ "Local" PdM approach

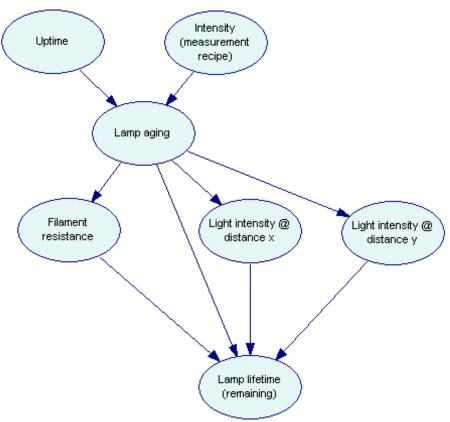
PdM implementation approaches "Global" PdM approaches

Methods:

- Manual methods:
 - Knowledge management: collection of process engineer's experience
 - E.g. FMEA, decision support techniques
- Automated methods:
 - Representation of experience in automated decision models
 - Learning decision systems from data
 - Classification methods, e.g. Decision tree techniques, Bayesian Networks

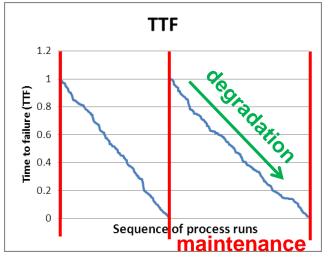
PdM implementation approaches "Local" PdM approaches

Methods:

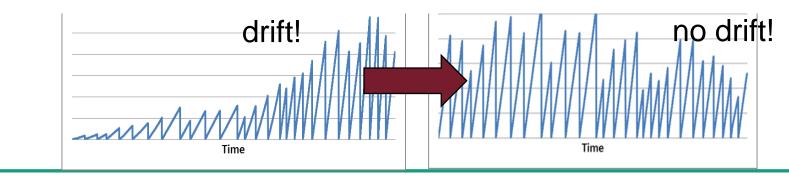

- Measurements and sensors:
 - Often not feasible
- Physical modeling:
 - Usually complex, computationaly expensive, requires good knowledge about process and tool physics and internal control loops
 - Physical equations, Monte-Carlo methods
- Univariate statistical modeling: monitoring of single parameter as degradation indicator (similar to SPC control of products)
 - Only possible if single degradation indicator already exists
 - Time series analysis methods for improvement of degradation indicator (e.g. smoothing, extrapolation)

PdM implementation approaches "Local" PdM approaches

- Multivariate statistical modeling: extraction of degradation indicator from multiple tool parameters
 - Multivariate dependencies usually unknown
 - Multivariate data mining/machine learning methods, regression techniques


Prediction of lamp lifetime

PdM implementation approaches Challenges in PdM modeling


- Noise on data resulting from:
 - High-mix production: different recipe setpoints cause frequent shifts in data
 - Intrinsic liftime of spare parts
 - Influence of maintenance on wear-part lifetime
 - Manual corrections of tool settings
 - Non-homogeneous degradation of wear parts
 - Noise reduction techniques
- Target variable (degradation rate):
 - Has to characterize tool degradation
 - For multivariate modeling usually no target variable in learn data available (otherwise: univariate modeling possible)
 - Offline creation of approximative degradation parameter from historical data, e.g. time to failure (TTF)

PdM implementation approaches Challenges in PdM modeling

- Workload:
 - Future production unknown at beginning of cycle
 - → Better model performance short before wear part failure
- Drift/shift in tool behaviour:
 - Parameters might drift over several maintenance cycles
 - Maintenance may cause shift in parameters
 - Retraining of model only possible if new failures are observed
 - → "controled failures" for creation of new learning data
 - → Compensation of drift/shift in data (e.g. methods of time series analysis)

Prerequisites for PdM Different kinds of data available

Tool and process data (from tool, FDC system)

- Recipe settings
- Trace data from tool
- Process data from previous processing

Measurement data (from offline measurements and quality control)

- Process results: film thickness, etch depth, CD, film composition, …
- Defectivity measurements

Logistic data (from MES system)

Wafer motion through fab

Maintenance data (from maintenance book)

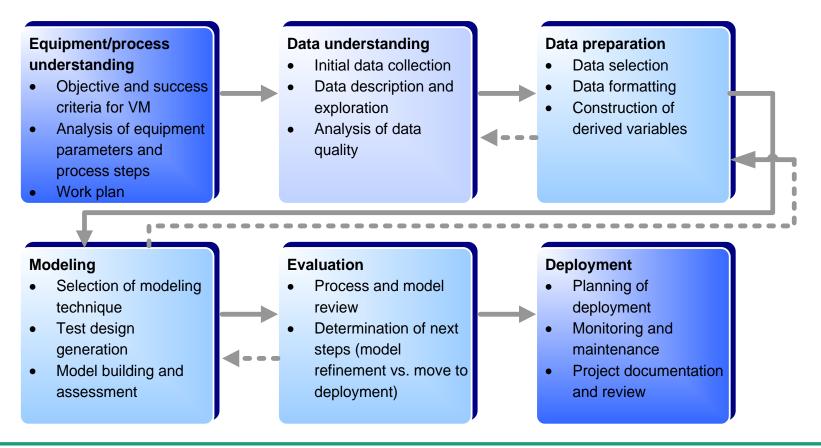
- Past maintenance actions
- Failure root causes
- Tool modifications

Prerequisites for PdM Data requirements

Merging of data from all available sources requires:

- Identical time stamp required
- Identical number of observations required
 - → Syncronisation of data sampling

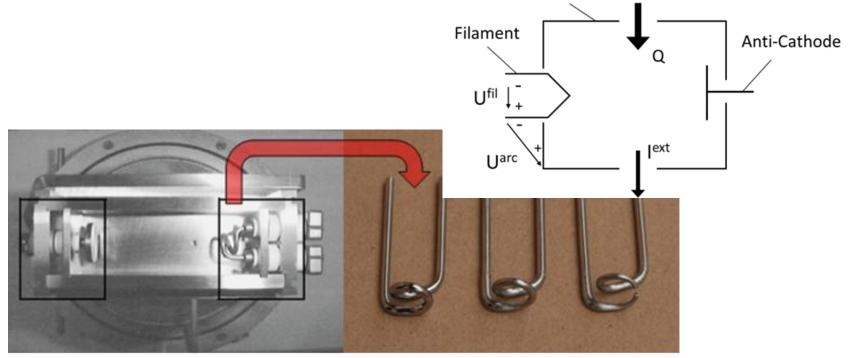
Maintenance data:


Often only handwritten notes

→ implementation of automated maintenance documentation procedure for storage of machine-readable maintenance data including time, failure mode and (if available) information regarding used spare parts and maintenance procedure

Statistical approaches to PdM Systematic approach to PdM development

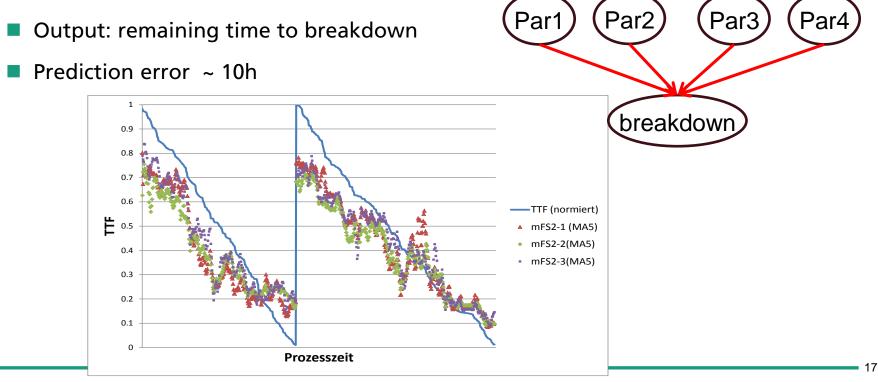
Phases in VM development as adapted from the Cross-Industry Standard Process for Data-Mining (CRISP-DM)



PdM Example PdM for ion implantation

Prediction of filament breakdown in ion source of implanter tool

- Ions cause sputtering of filament
- Most frequent maintenance task in ion implantation
- ➔ Prediction through statistical modeling


Arc chamber

PdM Example PdM for ion implantation

Methodology:

- Bayesian Networks with soft discretization
- Input data: tool parameters (different voltage/current values, pressure values, gas flow rates)

Conclusion

- No fixed definition of PdM
- Definition in semiconductor manufacturing: statistical modeling approach
- PdM implementation approaches:
 - "Local" vs. "Global" approach
- Challenges:
 - High-mix production
 - Availability of maintenance data
 - Existence of target variable
 - Retraining of models challenging
- Prerequisites for PdM
 - Data from different sources available
 - Collection of maintenance data

