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State-of-the-art 

 In current IC manufacturing, achievement of process stability and high production 
yield relies on reliable wafer monitoring by physical metrology  

 Critical parameters are assessed using monitor or product wafers 

 No broad implementation of concepts like virtual metrology 

Deficiencies  for monitoring and process  control 

 Limited possibility for process monitoring and control on wafer-to-wafer or on real-
time basis 

 Critical parameters may not be measurable with in-line measurements 

Concept of VM for IC-manufacturing and equipment control 
Overview 
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VM objectives  

 Predict post process physical and electrical quality parameters of wafers and/or 
devices from information collected from the manufacturing tools including support 
from other available information sources in the fab 

VM benefits   

 Support or replacement of stand-alone and in-line metrology operations  

 Support of FDC, run-to-run control, and PdM 

 Improved understanding of unit processes 

 Improved equipment control for VM running on equipment level 

Concept of VM for IC-manufacturing and equipment control 
VM objectives and benefits 
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State-of-the-art 

 Preventive Maintenance: time-based maintenance decisions 

 Early maintenance for security reasons leads to increased tool downtime 

 Reactive Maintenance (run to fail): error-based maintenance decisions 

 Causes scrap production and unscheduled downtime 

Deficiencies  for maintenance planning 

 Wear part end-of-life unknown, usually not measurable 

 

Concept of PdM for IC-manufacturing and equipment control 
Overview 
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PdM objectives  

 Predict tool failures and wear part end-of-life from manufacturing tool data, from 
metrology data, and VM results 

PdM benefits   

 Prevention of unscheduled downtime 

 Better maintenance planning 

 In-time allocation of maintenance personnel and spare parts 

 Prevention of scrap production 

Concept of PdM for IC-manufacturing and equipment control 
PdM objectives and benefits 

PdM workflow utilizing Bayesian Networks 
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Predictive Maintenance (PdM) 

 Prediction of tool failures for better 
maintenance planning 

 Enabled by long-range parameter drift 
in tool/sensor parameters 

 Question: „When do I have to perform 
maintenance without risking a tool 
breakdown?“ 

Concept of PdM for IC-manufacturing and equipment control 
PdM/VM modeling: Similarities and differences 

Virtual Metrology (VM) 

 Prediction of actual process 
outcome 

 Based on actual tool/sensor data 

 Question: „What process result will I 
get based on the actual parameter 
setting and tool condition?“ 

Regress ion/ Classification problem 

Statistical modellig 
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Concept for generic VM and PdM implementation 

Concept of VM for IC-manufacturing and equipment control 
Framework for implementation of VM and PdM in IC-manufacturing  
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VM and PdM application examples 
Systematic approach to VM/PdM development 

Phases in VM development as adapted from the 

Cross-Industry Standard Process for Data-Mining (CRISP-DM) 
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Trench etch process  

 The IT etch defines the active regions 

 The process is carried out in four steps:  

1. Etching of the organic ARC and 
nitride layer (mask open)  

2. Conditioning step 

3. Conditioning step 

4. Etching of the poly silicon (IT etch) 

 Strip of resist and of anti-reflective 
coating (ARC) by etching in a plasma 

 Steps 4 (and step 1) are expected to 
primarily define the etched depth which 
should be predicted by VM 

VM and PdM application examples 
Introduction to the etch process 
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Overview of data 

 Step and summary data (logistic, 
equipment, process, sensor) is collected 
for two slightly different etch recipes 
performed on four chambers 

 App. potential 120 predictor variables 
and 65000 cases are available for VM 
modeling (2900 with metrology data) 

Data cleaning 

 Elimination of invariant variables, 
variables with missing data, outliers 

 Selection of cases with metrology data 

 Predictor selection by a rule based 
elimination of correlated data 

VM and PdM application examples 
Data preparation steps 
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Data preparation: clustering according to the type of data 

VM and PdM application examples 
Data overview 
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Modeling approaches  

 Inclusion of all etch steps, 
prioritization in correlation 
analysis 

 Investigation of several 
learning algorithms 

 stepwise linear regression 

 neural networks 

 support vector machine 

 gradient  boosted trees 

 Currently boosted trees are 
investigated in detail because 
main algorithm selection 
criteria are met 

VM and PdM application examples 
Modeling approach - overview 
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Principle of boosted trees (BT) 

 Ensemble learning: improve performance of a single  
model by fitting and combining many simple models 

 BT applies two algorithm types: 

 algorithms for classification and regression trees 

 boosting algorithm to build a collection of models 

Advantages  

 Applicability to classification and regression problems 

 Accommodation of continuous and categorical  
predictors 

 Tree methods are nonparametric and nonlinear 

 Inherent variable ranking 

 Improved predictive performance vs. C&RT 

Limitations  

 Model is complex and cannot be visualized like a single tree 

VM and PdM application examples 
Overview of boosted regression trees 

Principle of BT 
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Modeling and validation 

 Training on data set taken 
from 06-07/2011 

 Validation on rest of 
sample for period 08-
10/2011 

Result 

 Prediction of etch-depth is 
possible 

 Variable ranking shows 
importance of predictors  

 Logistic variables with 
untrained characteristics 
can be modeled from 
missing data handling 
algorithms 

VM and PdM application examples 
Prediction capability of VM - overview 

VM prediction results  for training and 
model application 
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 Good prediction of etch-depth is 
achieved 

VM and PdM application examples 
Prediction capability of VM - details 

Parameter Training 
Model 

application 

Bias abs. 0.1 nm 0.2 nm 

Bias rel. < 0.1 % < 0.1% 

Std. dev. abs. 2.5 nm 4.2 nm 

Std. dev. rel. 0,5 % 0.8 % 

Distribution of prediction 
res iduals  



19 

© Fraunhofer IISB  

Motivation of retraining 

 Increase database for 
training and include more 
equipment behavior 
scenarios 

 Include rare logistic types 

Approach 

 Time-based (monthly) 
retraining 

Result 

 Monthly retraining 
continues stability of 
prediction 

 Investigate additional 
retraining scenarios, e.g. 
for fast retraining and 
optimized timing 

VM and PdM application examples 
Investigation of model retraining 

VM prediction res iduals  for different 
training and model application periods  
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Problem description: 

 Filament used for generation of electrons in ion source of implanter tool 

 Plasma in source causes ongoing degradation of filament through ion sputtering 

 Failure mechanism: breakdown of filaments 

VM and PdM application examples 
PdM: Modeling of filament breakdown in ion implantation 

new broken ion source 

filament 

pictures: austriamicrosystems AG 
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Bayesian Networks basics : 

 Probabilistic graphical modeling 

 Representation of random variables in nodes 

 Edges (arrows) between nodes represent              
conditional dependence between variables 

 Parent and child nodes: state of child nodes depends on state(s) of parent 
node(s) 

 Based on historic data, conditional probabilities in Bayesian networks can be 
learned 

 For time series data: dynamic BN (one model instance per time step) 
 

node 1 

node 3 

node 2 parent  

nodes 

child node 

p(node3|node1,node2) => „probability of node3 given node1 and node2“ 

VM and PdM application examples 
PdM: Modeling of filament breakdown in ion implantation 
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Modeling approaches  

 Method: Bayesian Networks with soft discretization 

 Input data: tool parameters (different voltage/current values, pressure values, gas 
flow rates) 

 Output: remaining time to breakdown 

 Model properties:  

 Prognosis in hours 

 Error: RMSE=8.3h 

VM and PdM application examples 
PdM: Modeling of filament breakdown in ion implantation 
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Achievements  

 Common architecture to integrate VM and PdM into the different existing fab 
systems developed 

 Software for implementation of VM and PdM modules in fab environments 
available 

 VM and PdM modules for important fabrication steps demonstrated 

 Development may follow a structured approach 

 Data quality and preparation is of key importance 

 Prediction quality but also other properties (e.g. model adaption, automation) 
are key to model selection 

Further research  

 Optimization of VM retraining; re-visit other machine learning algorithms  

 Continued testing of VM algorithm for etch-depth prediction 

Conclusions and outlook 
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