Workshop der GMM–Fachgruppe 1.2.3 Abscheide- und Ätzverfahren, 7.12.2011 Ulrich Schöpka, Georg Roeder, Fraunhofer IISB, Erlangen, Germany

- Motivation
- Virtual metrology (VM) and predictive maintenance (PdM)
 - Concept of VM and PdM for IC-manufacturing and equipment control
 - Framework for implementation of VM and PdM in IC-manufacturing
- VM and PdM application examples
 - Structured approach for VM and PdM development
 - Prediction of etch depth by VM
 - PdM for prediction of filament break-down in ion implantation
- Conclusions and outlook

Motivation

Virtual metrology (VM) and predictive maintenance (PdM)

- Concept of VM and PdM for IC-manufacturing and equipment control
- Framework for implementation of VM and PdM in IC-manufacturing
- VM and PdM application examples
 - Structured approach for VM and PdM development
 - Prediction of etch depth by VM
 - PdM for prediction of filament break-down in ion implantation
- Conclusions and outlook

Concept of VM for IC-manufacturing and equipment control **Overview**

State-of-the-art

- In current IC manufacturing, achievement of process stability and high production yield relies on reliable wafer monitoring by physical metrology
- Critical parameters are assessed using monitor or product wafers
- No broad implementation of concepts like virtual metrology

Deficiencies for monitoring and process control

- Limited possibility for process monitoring and control on wafer-to-wafer or on realtime basis
- Critical parameters may not be measurable with in-line measurements

Concept of VM for IC-manufacturing and equipment control VM objectives and benefits

VM objectives

Predict post process physical and electrical quality parameters of wafers and/or devices from information collected from the manufacturing tools including support from other available information sources in the fab

VM benefits

- Support or replacement of stand-alone and in-line metrology operations
- Support of FDC, run-to-run control, and PdM
- Improved understanding of unit processes
- Improved equipment control for VM running on equipment level

Concept of PdM for IC-manufacturing and equipment control Overview

State-of-the-art

- Preventive Maintenance: time-based maintenance decisions
 - Early maintenance for security reasons leads to increased tool downtime
- Reactive Maintenance (run to fail): error-based maintenance decisions
 - Causes scrap production and unscheduled downtime

Deficiencies for maintenance planning

Wear part end-of-life unknown, usually not measurable

Concept of PdM for IC-manufacturing and equipment control PdM objectives and benefits

PdM objectives

Predict tool failures and wear part end-of-life from manufacturing tool data, from metrology data, and VM results

PdM benefits

- Prevention of unscheduled downtime
- Better maintenance planning
- In-time allocation of maintenance personnel and spare parts
- Prevention of scrap production

Concept of PdM for IC-manufacturing and equipment control PdM/VM modeling: Similarities and differences

Predictive Maintenance (PdM)

- Prediction of tool failures for better maintenance planning
- Enabled by long-range parameter drift in tool/sensor parameters
- Question: "When do I have to perform maintenance without risking a tool breakdown?"

Virtual Metrology (VM)

- Prediction of actual process outcome
- Based on actual tool/sensor data
- Question: "What process result will I get based on the actual parameter setting and tool condition?"

Regression/ Classification problem

Statistical modellig

Concept of VM for IC-manufacturing and equipment control Framework for implementation of VM and PdM in IC-manufacturing

Concept for generic VM and PdM implementation

- Adoption of architectures following SEMI and SEMATECH, cconsideration of user requirements for framework
- Develop SW for framework implementation with component- and servicebased models for VM and PdM

- Motivation
- Virtual metrology (VM) and predictive maintenance (PdM)
 - Concept of VM and PdM for IC-manufacturing and equipment control
 - Framework for implementation of VM and PdM in IC-manufacturing
- VM and PdM application examples
 - Structured approach for VM and PdM development
 - Prediction of etch depth by VM
 - PdM for prediction of filament break-down in ion implantation
- Conclusions and outlook

VM and PdM application examples Systematic approach to VM/PdM development

Phases in VM development as adapted from the Cross-Industry Standard Process for Data-Mining (CRISP-DM)

VM and PdM application examples Introduction to the etch process

Trench etch process

- The IT etch defines the active regions
- The process is carried out in four steps:
 - 1. Etching of the organic ARC and nitride layer (mask open)
 - 2. Conditioning step
 - 3. Conditioning step
 - 4. Etching of the poly silicon (IT etch)
- Strip of resist and of anti-reflective coating (ARC) by etching in a plasma
- Steps 4 (and step 1) are expected to primarily define the etched depth which should be predicted by VM

IISB

VM and PdM application examples Data preparation steps

Overview of data

- Step and summary data (logistic, equipment, process, sensor) is collected for two slightly different etch recipes performed on four chambers
- App. potential 120 predictor variables and 65000 cases are available for VM modeling (2900 with metrology data)

Data cleaning

- Elimination of invariant variables, variables with missing data, outliers
- Selection of cases with metrology data
- Predictor selection by a rule based elimination of correlated data

VM and PdM application examples Data overview

#	datatyp	name	meaning/usage	unit	comment
20	equipment	O_GAS_AR_ST3_A	gas flow argon; measured	sccm	average
21	equipment	O_GAS_AR_ST3_R	gas flow argon; measured	sccm	range
22	equipment	O_GAS_CF4_ST3_A	gas flow CF4; measured	sccm	average
23	equipment	O_GAS_CF4_ST3_R	gas flow CF4; measured	sccm	range
24	equipment	O_GAS_CHF3_ST3_A	gas flow CHF3; measured	sccm	average
25	equipment	O_GAS_CHF3_ST3_R	gas flow CHF3; measured	sccm	range
26	equipment	O_GAS_N2_ST3_A	gas flow N2; measured	sccm	average
27	equipment	O_GAS_N2_ST3_R	gas flow N2; measured	sccm	range
28	equipment	O_GAS_O2_ST3_A	gas flow O2; measured	sccm	average
29	equipment	O_GAS_02_ST3_R	gas flow O2; measured	sccm	range
46	process data	O_PRS_CHB_A	chamber pressure; measured	Torr	average
47	process data	O_PRS_CHB_A_M		Torr	average_median
57	process data	O_RFREF_A	RF- reflected (derived value; measured)	W	average
58	process data	O_RFREF_A_M		W	average_median
59	process data	O_RFREF_ST3_A		W	average
60	logistics	O_RUNNUMBER		-	
67	logistics	O_Slot	slot	-	
70	logistics	O_TIME		days	
71	logistics	O_TIME_PREV_DIFF_A		S	average
72	logistics	O_TIME_PREV_DIFF_X		S	maximumum
73	equipment	O_TMP_CATH_A	temperature cathode (i.e. chiller); measured	°C	average
74	equipment	O_TMP_CATH_A_M		°C	
75	equipment	O_TUNE_A			average
76	equipment	O_TUNE_A_M	set-up RF match		average_median
77	equipment	O_TUNE_ST3_A			average
88	logistics	Lot		-	
89	logistics	O_EQUIPMENT		-	
90	logistics	O_2818_00_EQUIPMENT		-	
91	measurement data	0_2818_00_DP_E_MEAN		nm	
92	measurement data	0_2818_00_DP_E_RANGE		nm	
93	measurement data	0_2818_00_DP_E_MAX		nm	
94	measurement data	O_2818_00_DP_E_MIN		nm	
95	measurement data	0 2818 00 DP E STDEV		nm	

Data preparation: clustering according to the type of data

14

VM and PdM application examples Modeling approach - overview

Modeling approaches

- Inclusion of all etch steps, prioritization in correlation analysis
- Investigation of several learning algorithms
 - stepwise linear regression
 - neural networks
 - support vector machine
 - gradient boosted trees
- Currently boosted trees are investigated in detail because main algorithm selection criteria are met

Criteria for model selection

VM and PdM application examples Overview of boosted regression trees

Principle of boosted trees (BT)

- Ensemble learning: improve performance of a single model by fitting and combining many simple models
- BT applies two algorithm types:
 - algorithms for classification and regression trees
 - boosting algorithm to build a collection of models

Advantages

- Applicability to classification and regression problems
- Accommodation of continuous and categorical predictors
- Tree methods are nonparametric and nonlinear
- Inherent variable ranking
- Improved predictive performance vs. C&RT
 Limitations
- Model is complex and cannot be visualized like a single tree

Principle of BT

VM and PdM application examples

Prediction capability of VM - overview

Modeling and validation

- Training on data set taken from 06-07/2011
- Validation on rest of sample for period 08-10/2011

Result

- Prediction of etch-depth is possible
- Variable ranking shows importance of predictors
- Logistic variables with untrained characteristics can be modeled from missing data handling algorithms

VM prediction results for training and model application

VM and PdM application examples Prediction capability of VM - details

Parameter	Training	Model application
Bias abs.	0.1 nm	0.2 nm
Bias rel.	< 0.1 %	< 0.1%
Std. dev. abs.	2.5 nm	4.2 nm
Std. dev. rel.	0,5 %	0.8 %

Good prediction of etch-depth is achieved

Distribution of prediction residuals

18

VM and PdM application examples Investigation of model retraining

Motivation of retraining

- Increase database for training and include more equipment behavior scenarios
- Include rare logistic types

Approach

Time-based (monthly) retraining

Result

- Monthly retraining continues stability of prediction
- Investigate additional retraining scenarios, e.g. for fast retraining and optimized timing

VM prediction residuals for different training and model application periods

VM and PdM application examples PdM: Modeling of filament breakdown in ion implantation

Problem description:

- Filament used for generation of electrons in ion source of implanter tool
- Plasma in source causes ongoing degradation of filament through ion sputtering
- Failure mechanism: breakdown of filaments

imp

IISB

VM and PdM application examples

PdM: Modeling of filament breakdown in ion implantation

Bayesian Networks basics:

- Probabilistic graphical modeling
- Representation of random variables in nodes C
- Edges (arrows) between nodes represent conditional dependence between variables

- Parent and child nodes: state of child nodes depends on state(s) of parent node(s)
- Based on historic data, conditional probabilities in Bayesian networks can be learned
- For time series data: dynamic BN (one model instance per time step)

p(node3|node1,node2) => "probability of node3 given node1 and node2"

VM and PdM application examples

PdM: Modeling of filament breakdown in ion implantation

Modeling approaches

- Method: Bayesian Networks with soft discretization
- Input data: tool parameters (different voltage/current values, pressure values, gas flow rates)
- Output: remaining time to breakdown
- Model properties:
 - Prognosis in hours
 - Error: RMSE=8.3h

red curve: remaining time to failure as observed blue curve: remaining time to failure prognosis x-axis: time

improve

22

Conclusions and outlook

Achievements

- Common architecture to integrate VM and PdM into the different existing fab systems developed
- Software for implementation of VM and PdM modules in fab environments available
- VM and PdM modules for important fabrication steps demonstrated
 - Development may follow a structured approach
 - Data quality and preparation is of key importance
 - Prediction quality but also other properties (e.g. model adaption, automation) are key to model selection

Further research

- Optimization of VM retraining; re-visit other machine learning algorithms
- Continued testing of VM algorithm for etch-depth prediction

23

Acknowledgment

- This research is funded by the German Federal Ministry of **Education and Research** (BMBF) and the European Nanoelectronics Initiative Advisory Council (ENIAC)
- The work is carried out in the ENIAC project "IMPROVE" (Implementing Manufacturing science solutions to increase equipment PROductiVity and fab pErformance); project ID: 12005
- More information: www.eniac-improve.eu

